Big Data Factories [ [Электронный ресурс] : collaborative Approaches / edited by Sorin Adam Matei, Nicolas Jullien, Sean P. Goggins. - 1st ed. 2017. - Cham : Springer International Publishing, 2017. - 141 p. : 18 illus. - URL: https://link.springer.com/content/pdf/10.1007%2F978-3-319-59186-5.pdf (SpringerLink). - ISBN 978-3-319-591 86-5 : Б. ц.
Ключові слова: eлектронні книги springer 2017 р. -- Анотація: The book proposes a systematic approach to big data collection, documentation and development of analytic procedures that foster collaboration on a large scale. This approach, designated as “data factoring” emphasizes the need to think of each individual dataset developed by an individual project as part of a broader data ecosystem, easily accessible and exploitable by parties not directly involved with data collection and documentation. Furthermore, data factoring uses and encourages pre-analytic operations that add value to big data sets, especially recombining and repurposing. The book proposes a research-development agenda that can undergird an ideal data factory approach. Several programmatic chapters discuss specialized issues involved in data factoring (documentation, meta-data specification, building flexible, yet comprehensive data ontologies, usability issues involved in collaborative tools, etc.). The book also presents case studies for data factoring and processing that canlead to building better scientific collaboration and data sharing strategies and tools. Finally, the book presents the teaching utility of data factoring and the ethical and privacy concerns related to it. Chapter 9 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Кількість примірників на окремих абонементах
#
Відділ
Всього примірників
Вільних примірників
Інвентарні номери примірників на окремих абонементах